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arbitrary points
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Besan¸con Cedex, France
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Abstract. A solvable model for non relativistic quantum scattering in three-dimensional space
of a particle off several interactions centred atn arbitrary points is given. The interaction at one
centre can be very different from the interaction at another. Each interaction centred at a given
point can be effective on any partial wave with respect to this point. Each centred interaction
is a sum of projectors on a finite number of partial waves relative to the centre. Elementary
applications are given.

1. Introduction

A solvable model for scattering of a particle off many centres is known under
various names such as ‘point interactions, zero-range potentials, delta interactions, Fermi
pseudopotentials,. . . ’. This model is analysed and reviewed in detail by Albeverioet al
[1]. In this model, each interaction at the pointPj is αjδd(r − aj ) with aj the vector
from an origin to the pointPj , andd the dimension of the space. Each interaction is thus
parametrized by a single parameter,αj , and in three-dimensional space, (d = 3), each point
interaction is effective only on thes partial wave (̀ = 0) relative to this point. For the
wide field of applications in physics of these zero-range potentials, we refer to [1].

We present in this paper another solvable model, in three-dimensional space. The total
interaction is the sum ofn interactions centred atn arbitrary points. The interactions centred
at different points can be very different from each other. The interaction centred at a given
point (or centre), is of non-zero range and can involve any partial wave (relative to this
centre). A detailed presentation of the total interaction is given in section 2. From a
mathematical point of view, this model appears simpler than the zero-range model because
each interaction is less singular. Roughly speaking, only one Dirac distribution is involved
whereas three are needed by the zero-range potentials in three-dimensional space. This
model is also more ‘flexible’ than the zero-range model in the sense that it can describe
a much larger class of interactions. It is nevertheless best suited for the description of
short-range interactions for low-energy processes, because in these situations the results are
simpler.

By solvable model, we mean a model where the scattering amplitude can be expressed
explicitly in terms of well known functions (specifically: spherical Bessel functions,
spherical harmonics,so(3) Clebsch–Gordan coefficients). To compute effectively the
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scattering amplitude, one has however to solve a linear system of algebraic equations.
The order of this system increases linearly with the number of scattering centres.

Although the main purpose of this paper is to present the model, elementary applications
are presented in section 4 for the purpose of illustration.

2. The overall interaction

V =
n∑
j=1

Vj . (1)

Points of the space will be referred to with respect to an arbitrary chosen right-hand
orthonormal frame of axesx, y, z with origin O. The interactionVj is centred on the
point Pj defined by the vector equation

EOPj = aj . (2)

A one to one correspondence between points and indices is assumed: ifj 6= s then also
aj 6= as . We use units such that ¯h = 1, e = 1, me− = 1 (atomic units). The interactionVj
is defined by

Vj =
∑
k

λkj |ξkj 〉〈ξkj | (3)

|ξkj 〉 = exp(−iaj · p)(rkj )3/2|rkj , `kj , mkj 〉. (4)

The vector |rkj , `kj , mkj 〉 is a generalized vector, i.e. the norm involves a distribution.
Normalization and phase conventions are summarized in appendix A. The vector|rkj , `kj , mkj 〉
is an eigenvector of the squared orbital angular momentum with eigenvalue`kj (`

k
j + 1), an

eigenvector of the componentLz of the orbital angular momentum with eigenvaluemkj , and
a generalized eigenvector of the radial position operator with generalized eigenvaluerkj . All
operators are relative to the frameO, x, y, z.

The momentum operator is denoted byp. The exponential term in equation (4)
corresponds to a translation by a vector displacementaj . The lower index (presentlyj )
corresponds to the position of the centre of the interactionVj . The variation range of the
upper index (presentlyk) depends on the pointPj . The interactionVj is thus the sum of
separable interactions centred on the pointPj , of rangerkj , of strengthλkj .

The question now may arise, of how a given central potentialW of ranger0 can be
approximated by our nonlocal interactions. From the equation (see appendix A):

W =
∫ r0

0
dr r2

∑
`,m

W(r)|r, `,m〉〈r, `,m|

it is seen thatW can effectively be approximated by a finite sum of separable interactions if
the integral is approximated by a discrete sum and if the infinite summation over the partial
waves is replaced by a finite summation up to a maximum value`max. The value of̀ max

will increase with the energy of the collision, and at very low energy, one has`max= 0.

3. Solution of the scattering problem

LetM denote the mass of the particle andp2
0/(2M) its kinetic energy when it moves freely,

long before or after the collision. It is well known (see e.g. [2]) that the complete solution
of the scattering problem is determined if the operator

T (z) = V + VG(z)V (5)
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is known. The operatorG(z), called the resolvent or Green operator, is defined by

G(z) = [z − p2/(2M)− V ]−1. (6)

The existence ofG(z) and therefore ofT (z) requires of course thatz does not belong to
the spectrum of the total Hamiltonianp2/(2M)+ V . The scattering amplitudef (p′ ← p),
corresponding to initial momentump, and final momentump′ with p · p = p′ · p′ = p2

0, is
given by:

f (p′ ← p) = −(2π)2M lim
ε→0+
〈p′|T (p2

0/(2M)+ iε)|p〉
where limε→0+ means thatε goes to zero and is positive. The scattering amplitude
f (p′ ← p) contains all the information. In particular, the differential cross section can
be expressed as

dσ

d�
= |f (p′ ← p)|2.

Integration over the solid angle� yields the integrated (or total) cross section which can
also be obtained more easily from the optical theorem

σ = 4π

p0
=(f (p← p)). (7)

The algebraic identity

G(z) = G0(z)+G0(z)VG(z) (8)

with

G0(z) = [z − p2/(2M)]−1 (9)

leads generally to an integral equation for the matrix elements ofG(z). This equation, called
the Lippman–Schwinger equation, is generally very difficult to solve. For the interaction (1)
which according to equation (3) is the sum of separable interactions, only the matrix elements
〈ξkj |G(z)|ξ rq 〉 are required for the determination ofT (z) (see equation (5)). Moreover, the
determination of these matrix elements by using equation (8) reduces to solving a linear
system of algebraic equations if the matrix elements〈ξkj |G0(z)|ξ rq 〉 are known. Specifically,
if all |ξ rq 〉 are indexed by a different integer (|J 〉 ≡ |ξ rq 〉) running from unity up to the total
numberN of different|ξ rq 〉, one has to solve the matrix equation:g = b−1g0 with theN order
matrices defined bygIJ = 〈I |G(z)|J 〉, (g0)IJ = 〈I |G0(z)|J 〉, bIJ = δIJ − λJ 〈I |G0(z)|J 〉
where δIJ is the Kronecker symbol. For the interaction given by equations (1), (3) and
(4) it is shown in appendix B that the matrix elements〈ξkj |G0(z)|ξ rq 〉 can be determined
analytically (see equations (42) and (45)). Equation (45) is the key result that allows
a complete analytical solution of the model. This equation has been derived under the
conditions (44) which express the fact that interactions centred on different points must not
overlap. The case of overlapping interactions yields a different result which could also be
computed analytically.

4. Applications

From now on, we define
√
z as the square root with a positive imaginary part, and, when

z is a real positive number, as limε→0+
√
z + iε. The relation betweenz and momentump

is given by

p ≡
√

2Mz. (10)
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Thus, for notational convenience,p is used in place ofp0 and it should be clear from the
context whenp denotes an operator or a number.

For applications we shall limit ourself to the cases where each centred interactionVj is
invariant by time reversal and rotation about its centre. The centred interactionsVj (equation
(3)) are not necessarily invariant by time reversal, nor by rotation. The constraints onVj in
order to satisfy these symmetries are discussed in appendix C.

4.1. Scattering off a single centre

It is important first to study thoroughly the scattering off a single centre in order to appreciate
the signification of each centred interaction. For a single centre, there is only one termV1

in equation (1). For the sake of simplicity we shall only consider the case where there is
only one range,r`, for each partial wavè. The origin of space is arbitrary and we choose
thereforea1 = 0.

V = V1 =
∑
`

λ`(r`)3
∑̀
m=−`
|r`, `,m〉〈r`, `,m|.

The symbol` in (r`)3 is an upper index, the number 3 an exponent. The interactionV

is thus the sum of projectors on different partial waves, and the scattering amplitude is
decomposed as:

f (p′ ← p) =
∑
`

(2`+ 1)f`(p)P`(cos(θ))

with 0 6 θ 6 π the angle between initial and final momentap,p′. The equations (5), (6),
(8) and (9) yield

T (z) =
∑
`

∑̀
m=−`

(r`)3|r`, `,m〉〈r`, `,m|
1
λ`
− (r`)3〈r`, `,m|G0(z)|r`, `,m〉

(11)

and, using the addition theorem for spherical harmonics, and equation (42), the partial-wave
scattering amplitude is given by

f`(p) = − j2
` (pr

`)
1

2M(r`)3λ` + pj`(pr`)h+` (pr`)
. (12)

For the sake of completeness we also give the explicit expression of the stationary scattering
partial-wave states defined by

|p, `,m,+〉 = |p, `,m〉 +G0(z)T (z)|p, `,m〉.
One obtains

〈r, `,m|p, `,m,+〉 = i`
√

2

π

{
j`(pr)− j`(pr

`)
1

λ`2M(r`)3 + ph+` (pr`)j`(pr`)
ph+` (pr〉)j`(pr〈)

}
(13)

with r〈, r〉 respectively the smallest and greatest of the two valuesr, r`.
It is clear from equation (11) that the poles of theT -operator, or equivalently the poles

of the resolvent are given by the equation

1/λ` = (r`)3〈r`, `,m|G0(z)|r`, `,m〉. (14)

It can be shown (see e.g. [3]) that a separable interactionλ|ξ〉〈ξ | supports at most one bound
state, and supports it when 0〉1/λ〉 〈ξ |G0(0)|ξ〉. The energyEb of the bound state is given
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by 1/λ = 〈ξ |G0(Eb)|ξ〉. In these cases, each partial wave interaction can support a bound
state if

0〉1/λ〉 lim
p→0
−2M(r`)3ph+` (pr

`)j`(pr
`) = −2M

(r`)2

2`+ 1
≡ 1

λ`c
.

Thus a bound state can be supported ifλ` is smaller than the (negative) critical valueλ`c.
A pole of the resolvent near the real axis gives rise to a resonance in the diffusion,

whose width is related to its imaginary part (in the variablep2/(2M)). These poles are
zeros of the denominator of equation (12 ), or zeros of the Jost functionϒ`(p) [2]. The
explicit expression for the Jost function can be obtained from the stationary scattering partial
wavefunction (13) and is, according to the general definition, given in [2]:

ϒ`(p) = 1+ λ`2M(r`)3ph+` (pr`)j`(pr`)

= 1− λ
`

λ`c

{[
1+ 2

(2`− 1)(2`+ 3)
(pr`)2+ · · ·

]
+i

(pr`)2`+1

(2`+ 1)!!(2`− 1)!!

[
1− (pr

`)2

2`+ 3
+ · · ·

]}
. (15)

The zeros of the Jost function in the complexp-plane can be expanded as a series in

the variabley ≡ λ`c−λ`
λ`

from equation (15) by taking the left-hand side equal to zero and
reversing the series. One obtains a power series for` = 0:

p = i

r0

{
−y + 2

3
y2− 5

9
y3+ 68

135
y4− 193

405
y5+O(y6)

}
and a fractional power series for`〉0:

p = 1

r`

{[√
(2`+ 3)(2`− 1)

2
y1/2+O(y3/2)

]

−i

[
(2`+ 3)`+1(2`− 1)`

4(2`+ 1)!!(2`− 3)!!2`
y` +O(y`+1)

]}
. (16)

For ` = 0, the zero is on the positive imaginary axis forλ0〈λ0
c (i.e. y〈0), crosses the origin

for λ0 = λ0
c (i.e. y = 0) and moves to the negative imaginary axis forλ0〉λ0

c (i.e. y〉0).
This behaviour leads to a zero energy resonance. A pole close to the origin on the negative
imaginary axis of thep-plane corresponds to a pole on the real axis of the second Riemann
sheet of the complex-energy plane where it is sometimes referred to as giving rise to a
virtual state (see e.g. [2]). For̀〉0, the zeros are double. Forλ`〈λ`c one is on the positive
imaginary axis, the other on the negative imaginary axis. They move toward the origin when
λ` increases and cross the origin forλ` = λ`c. Then, forλ`〉λ`c, they move tangentially to the
real axis with a negative imaginary part, giving rise to a nonzero energy resonance. As the
imaginary part varies asy`, the widths of the resonances decrease rapidly as` increases.

This different behaviour is not specific to the present model interaction but is a general
property (see e.g. [2]). The series for the zero of the Jost function can, however, be computed
to arbitrary precision for arbitrary fixed̀-value for the present model. For example, for
` = 1

p = 1

r1

{[√
5√
2

(
y1/2− 2215

4032
y3/2+ 104 725

221 184
y5/2− 217 723 897 375

480 687 685 632
y7/2+ · · ·

)]

+i

[
−25

24
y + 4775

6048
y2− 4431 775

6096 384
y3+ 572 969 875

804 722 688
y4+ · · ·

]}
.
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Figure 1. Total cross sectionσ for scattering by one centre. The abscissa corresponds to
the momentump of the incident particle. The full curve represents the cross section for the
interactionV− given by equation (17). The curve with cross symbols represents the cross
section for the interactionV+ also given by equation (17). The lower curve with circle
symbols represents the cross section for the interactionV∞ which is defined by replacing
λ` = −(`+ 1/2∓ 0.3) in equation (17) by the limitλ` →±∞.

Figure 1 reports the total cross section for a particle of mass unity for the two cases:

V∓ =
5∑
`=0

−(`+ 1
2 ∓ 0.3)

∑̀
m=−`
|r = 1, `,m〉〈r = 1, `,m|. (17)

The λ` values−(` + 0.2) are then slightly above the critical valuesλ`c = −` − 1
2 for the

existence of a bound state. The five maxima in the full curve of figure 1 are resonances
associated with̀ = 1, 2, 3, 4, 5. The width of resonances decreases as` increases as is
expected from equation (16). A zero-energy resonance is not manifested becauseλ0 = −0.2
is far enough from the critical valueλ0

c = − 1
2. The curve with cross symbols in figure 1

represents the total cross section for the caseλ` = −(` + 0.8), which are values slightly
below the critical valuesλ`c . It is seen that for this case, it is the` = 0 bound state and only
this state near zero energy that manifests itself as a resonance in the cross section. Finally
the lower curve with circle symbols represents the cross section for the caseλ`→±∞.

In the limit λ→ −∞, it can be shown from the asymptotic expansions (38) and (39),
and the equation (42) that the energy of the bound stateEb = −k2/(2M) verifies the
equation limλ→−∞ k/λ = −Mr` for every` value.

In the limit of zero-energy scattering, thes partial wave becomes predominant and
we shall now consider in more detail the scattering by a singles-wave interaction. For
notational convenience we omit the upper index 0 inλ0, r0, and add a left lower index 1
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to the scattering amplitude to recall that only one centre is present:

1f (p
′ ← p) =1 f0(p) = −

(
sin(pr)
pr

)2

1
2Mr3λ

+ p
(

sin(pr)
pr

) (
exp(ipr)
pr

) . (18)

In particular

lim
p→0

1f (p
′ ← p) = − 1

1
2Mr3λ

+ 1
r

.

Let us denote for future convenience by1σ
0(p, r, λ) the integrated (or total) cross section

for s-wave scattering.

1σ
0(p, r, λ) = 4π |f0(p)|2 (19)

lim
λ→±∞ 1σ

0(p, r, λ) = 4π

(
sin(pr)

p

)2

. (20)

It is seen from equation (20) that in the limit where bothλ→±∞, p→ 0 the cross section
is 4πr2, the same result as for the scattering by an impenetrable sphere of radiusr (see
e.g. [4]). Care should be taken with respect to the order relative to which different limits
are taken. For example, the limitp → ∞ in equation (20) yields a result different from
the one obtained by the more physical procedure which is to first take the limitp→∞ in
equations (19) and (18) and then the limitλ→±∞.

4.2. Scattering off two projectors

The interaction is defined by

V = V1+ V2

= λ1|ξ1〉〈ξ1| + λ2|ξ2〉〈ξ2|. (21)

The T operator (see equation (5)) associated with any interaction of the form given by
equation (21) can be cast, after some algebraic calculation, into the form

T (z) = c(z) {T1(z)+ T2(z)+ T1(z)G0(z)T2(z)+ T2(z)G0(z)T1(z)} (22)

with Tj (z) the T operator corresponding to the situation where only the interactionVj is
present:

Tj (z) = λj |ξj 〉〈ξj |
1− λj 〈ξj |G0(z)|ξj 〉

and the numerical functionc(z) given by

c(z) =
[

1− λ1λ2〈ξ1|G0(z)|ξ2〉〈ξ2|G0(z)|ξ1〉
(1− λ1〈ξ1|G0(z)|ξ1〉)(1− λ2〈ξ2|G0(z)|ξ2〉)

]−1

.

It is also easy to show by inspection that the expansion ofc(z) according to the geometric
series 1/(1− x) = 1+ x + x2+ · · · in equation (22) yields

T (z) = T1(z)+ T2(z)+ T1(z)G0(z)T2(z)+ T2(z)G0(z)T1(z)

+T1(z)G0(z)T2(z)G0(z)T1(z)+ T2(z)G0(z)T1(z)G0(z)T2(z)+ · · · . (23)
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This is a particular case of the so-called Faddeev–Watson multiple scattering expansion (see
e.g. [5]). One thus obtains the following result:the Faddeev–Watson expansion (FWE)(23)
converges if ∣∣∣∣ λ1λ2〈ξ1|G0(z)|ξ2〉〈ξ2|G0(z)|ξ1〉

(1− λ1〈ξ1|G0(z)|ξ1〉)(1− λ2〈ξ2|G0(z)|ξ2〉)
∣∣∣∣ < 1 (24)

and diverges otherwise. The physical conditions corresponding to convergence or divergence
will now be discussed in a particular example.

4.2.1. Scattering off two identical s-wave projectors centred on different points.The
interaction is thus:

V = λr3{|r, 0, 0〉〈r, 0, 0| + exp(−ia · p)|r, 0, 0〉〈r, 0, 0| exp(ia · p)}.
Condition (24) yields in this case (see equations (43) and (46)):∣∣∣∣∣∣∣

(
sin(pr)
pr

)2
1

p|aj−as |
1

2Mr3pλ
+ exp(ipr)

pr

(
sin(pr)
pr

)
∣∣∣∣∣∣∣
2

〈1.

The FWE thus converges if|λ| is sufficiently small. This was expected since whenλ→ 0,
the FWE becomes similar to the Born series. Whatever the value ofλ, the FWE converges
provided the distance between the two points is sufficiently large. It is of interest to note
that the ‘rapidity’ of convergence is governed by the square of the inverse of the distance
between the two centres. The FWE also converges ifp is sufficiently large.

The general explicit result for the total cross section is rather cumbersome, and we shall
only consider some limiting cases. The sum of the two interaction is of course not invariant
by arbitrary rotation and not a projector on any partial wave. Letω denotes the angle
between the initial momentump and the axis determined by the two scattering centres. The
integrated cross section is denoted2σ

0(p, r, λ, a, ω) with the upper 0 index to recall that
each of the two interactions is a projector on thes-wave with respect to its own centre and
the left index 2 to recall that two centres are present.

The general method described in section 3 and the use of the optical theorem (7) leads
after tedious but elementary calculation to

2σ
0(p, r,∞, a, ω) ≡ lim

λ→±∞ 2σ
0(p, r, λ, a) = 8πa2 sin2(pr)

×[{(pa)2+ pa cos(pa cosω) sin(p(a − 2r))− sin(pr) sin(p(2a − r))
+ cos(pa cosω) sin2(pr) sin(pa)/(pa)}][((pa)2− sin2(pr))2

+(2pa sin(pr) sin(p(a − r)))2]−1.

This cross section varies the most rapidly with energy for an initial momentum collinear
with the axis (ω = 0) due to the term cos(pa cosω). This is a property that is not specific
to the caseλ→±∞. Other relations pertaining to different limits are:

lim
a→∞ and pa→∞ 2σ

0(p, r,∞, a, ω) = 21σ
0(p, r,∞) (25)

lim
pa→0

2σ
0(p, r, λ, a, ω) = 4

4π(
1

2Mr3λ
+ 1

r
+ 1

a

)2

= 4
4π(

− 1
1f
+ 1

a

)2 (26)
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lim
pa→0 and a→∞ 2σ

0(p, r, λ, a, ω) = 41σ
0(p, r, λ). (27)

Equations (25)–(27) are particularly interesting since they do not involve directly the
parameters of the interactions, but relate scattering data of two-centre processes to scattering
data relevant to one-centre processes.

Let us now consider the poles of the resolvent, which are also the poles of theT -operator.
One obtains after some calculation that the poles of these operators are determined by the
two (independent) equations:

1

λ
= −2Mr sin(pr)

pa exp(ipr)∓ sin(pr) exp(ipa)

p2a
(28)

which have respectively the following series expansions:

1

λ
= −2Mr2

(
1− r

a

)
− Mr

3(3a2+ 2r2− 4ra)

3a
p2− ia2Mr3p3

3
+O(p4) (29)

1

λ
= −2Mr2

(
1+ r

a

)
− 4iMr3p + Mr

3(4ra + 3a2+ 2r2)

3a
p2+O(p3). (30)

In the expansion (29), nearp = 0 (corresponding to the minus sign in equation (28)), the
linear term is zero. This is in contrast to the expansion for one centre (see equations (14)
and (43)) which can be recovered byfirst taking the limita → +∞ in the two equations
(28) andthenmaking a series expansion:

lim
a→+∞1/λ = −2

Mr sin(pr)exp(ipr)

p

= −2Mr2− 2iMr3p + 4
3Mr

4p2+ 2
3iMr5p3+O(p4).

With the definitions

λ∓ ≡ − 1

2Mr2(1∓ r/a)
the series (29) can be reversed and yields for the poles a fractional power series in the
variablex ≡ 1/λ− 1/λ−:

p =
(

3a

Mr3(−3a2− 2r2+ 4ar)

)1/2

x1/2+ i
3a4

2Mr3(−3a2− 2r2+ 4ar)2
x +O(x3/2)

and the reversion of the series (30) yields a power series in the variabley ≡ 1/λ− 1/λ+:

p = i
1

4Mr3

{
y + 3a2+ 2r2+ 4ar

48Mr3a
y2+O(y3)

}
.

One deduces from equations (29) and (30) that two bound states exist forλ〈λ−, one bound
state exists forλ−〈λ〈λ+, and no bound states exist forλ〉λ+. The generalization to a periodic
linear chain with more centres (see e.g. [6]) allows the description of a chain with many
close energy levels separated by gaps: different spectral regions of high densities of states
can be obtained by choosing different suitableλ` values in the interaction.

4.3. Scattering off a linear chain

The interaction is invariant by rotation about the axis of the chain which will be chosen
as thez axis, i.e. the axis of quantization. As a result, the scattering amplitude can be
expanded as

f (p′ ← p) =
∑
m

fm(p
′ ← p)
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and each partial scattering amplitudefm(p′ ← p) can be computed independently. If each
interactionVj is invariant under time reversal, thenfm = f−m and one has

f (p′ ← p) = f0(p
′ ← p)+ 2

∑
m>1

fm(p
′ ← p).

The results simplify further if the initial momentum is parallel to the axis of the chain.
Equation (37) then shows that only them = 0 partial amplitude contributes due to the
Kronecker symbol in the equationYm` (0, ϕ) =

√
(2`+ 1)/(4π)δm0, giving

f (p′ ← p‖) = f0(p
′ ← p).

A numerical application is presented for the three interactionsV 0, V 1 , V 2:

V n =
2∑
k=0

exp(−ika · p)vn exp(−ika · p) (31)

vn = λr3
n∑
`=0

∑̀
m=−`
|r, `,m〉〈r, `,m|. (32)

EachV n thus represents a linear chain of three identical interactionsvn separated by a
distancea. The interactionvn is effective on the firstn+1 partial waves with respect to its
centre. The range and strength of the interaction arer = 1 , λ = 100, and the intercentre
separation isa = 5.

Figure 2 represents the total cross sections forone centre only, versus the momentum
0〈p〈3 for a particle of unit mass. The curve with circle symbols is forv0, the curve with

Figure 2. Total cross sectionσ for scattering by one centre. The abscissa corresponds to the
momentump of the incident particle. The three curves correspond to the three interactions
given by equation (32). See text.
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Figure 3. Ratio of the total cross section for scattering off a linear chain of three centres to the
total cross section for scattering off one centre only, as a function of the momentump of the
incident particle, parallel to the axis of the chain. For the interactions, see equations (31) and
(32).

cross symbols is forv1, the full curve is forv2. Figure 3 represents the ratio of the total
cross section for the interactionV n (the linear chain with three centres) to the total cross
section for the interactionvn (one centre only), in the case where the initial momentum
is parallel to the axis of the chain. Figure 4 represents the same ratios but for an initial
momentum perpendicular to the axis of the chain. The curves with circles, crosses, and the
full curve in figures 3 and 4 again correspond to the cases` = 0, ` = {0, 1}, ` = {0, 1, 2}
respectively. It is seen that the total cross section is more sensitive to the detail of the
interaction and to the energy of the collision for an incident momentum parallel to the chain
axis.

A strong anisotropy for scattering by a linear chain is expected [7] at sufficiently high
energy due to interference effects. As in optics, one expects the differential cross section
to present maxima at well defined scattering angles. Letωi , ωf denote the angles between
the initial momentum and the axis of the chain, and the final momentum and the axis of the
chain. The maxima for the scattering angleθ = ωf − ωi are expected to be given by:

sin(θ/2) = nπ

pa sin((ωi + ωf)/2)
(33)

with n integer. For an initial momentum parallel to the axis of the chain (ωi = 0), equation
(33) gives:

θ = 2 arcsin

(√
nπ

pa

)
. (34)
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Figure 4. Same as figure 3 but for an initial momentump perpendicular to the axis of the
chain.

This effect is clearly manifested for a chain with only five centres as will now be illustrated.
Figure 5 reports the differential cross sectionfor one centre, (r` = 1, λ` = 100 as
previously) as a function of the scattering angleθ , for an initial momentump = 2 and
a particle of unit mass. The horizontal broken line corresponds to the case where the
interaction involves only thes-wave (̀ = 0), and the full curve corresponds to the case
where the three partial waves` = 0, ` = 1, ` = 2 are included in the interaction. Figure 6
reports this differential cross section at the same energy, for a chain of five centres, with the
intercentre separationa = 5, for the case where the initial momentum is parallel to the axis of
the chain. In that case, the problem is still invariant under rotation about the axis of the chain
and the differential cross section depends only on the angleθ . The curve with circles is for
the case where the interaction on each centre involves only thes partial wavè = 0, the full
curve is for the case where the interaction on each centre involves the three partial waves` =
{0, 1, 2} . The three angles given by equation (34) forn = {1, 2, 3} are reported with symbol
V in figure 6. They indeed correspond to three pronounced local maxima of the two curves.
The casen = 0 of course corresponds to the maximum in the forward direction (θ = 0). The
forward scattering peak is much larger than the others for the case where the nonzero partial
waves are included in the interaction, whereas its magnitude is equal to the others for the case
where only thè = 0 partial wave is included in the interaction. This is clearly explained by
the different behaviour of the differential cross section for one centre presented in figure 5.
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Figure 5. Differential cross section dσ/d� for scattering off one centre versus the scattering
angleθ in radians, for an initial momentump = 2. The full curve correponds to the case where
three partial waves are taken into account, the broken line to the case where only thes-wave is
taken into account. See text for the details of the interactions.

Figure 6. Differential cross section dσ/d� for scattering off a linear chain of five centres for
an initial momentump = 2 parallel to the chain axis, versus the scattering angle in radians. See
text.
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Appendix A. Normalization and phase conventions

(Lx ± iLy)|r, `,m〉 =
√
(`±m+ 1)(`∓m)|r, `,m± 1〉

〈r ′, `′, m′|r, `,m〉 = δ(r ′ − r)
r2

δ``′δmm′

〈r′|r, `,m〉 = δ(r ′ − r)
r2

Ym` (r
′).

(35)

(We use for convenience the notationYm` (x) in place of the more correct notationYm` (
x
|x| ).)

The spherical harmonic functionsYm` are defined as in [8].

1=
∫

d3r|r〉〈r|

=
∫ ∞

0
dr r2

∞∑
l=0

∑̀
m=−`
|r, `,m〉〈r, `,m| (36)

|r, `,m〉 =
∫

d3r ′
δ(r ′ − r)
r2

Yml (r
′)|r′〉

=
∫

dr Yml (r)|r〉

|r〉 =
∞∑
l=0

∑̀
m=−`

Yml (r)|r, `,m〉.

All the above equations remain valid if the letterr is replaced byp with the corresponding
interpretation in momentum space. (For example|p〉 represents a plane wave.)

The relations between these vectors are

〈r, `,m|p, `′, m′〉 = δ``′δmm′ i`
√

2

π
j`(pr)

〈r|p, `,m〉 = i`
√

2

π
j`(pr)Y

m
` (r)

〈p|r, `,m〉 = (−i)`
√

2

π
j`(pr)Y

m
` (p)

(2π)3/2〈r|p〉 = exp(ir · p) = 4π
∞∑
`=0

∑̀
m=−`

i`j`(pr)Ym` (p)Y
m
` (r).

(37)

The spherical Bessel functionj` is related to the usual Bessel functionJ`+ 1
2

which is regular
at the origin (see e.g. [9]) by the equation

j`(z) ≡
( π

2z

)1/2
J`+1/2(z)

= z`
(
−1

z

d

dz

)̀ (
sin(z)

z

)
= sin(z − `π/2)

z
[1+O(z−1)] as z→∞. (38)
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For future convenience the spherical Bessel functionsh±` (z) are also now introduced (see
e.g. [10]):

h±` (z) ≡ (−1)`
( π

2z

)1/2
J−`− 1

2
(z)± ij`(z)

= z`
(
−1

z

d

dz

)` (exp(±iz)

z

)
= exp(±i(z − `π/2))

z
[1+O(z−1)] as z→∞. (39)

These functions satisfy the following relations which will be used in appendix B:

j`(−z) = (−1)`j`(z) (40)

h±` (−z) = (−1)`+1h∓` (z). (41)

Appendix B. Analytical expressions for matrix elements

B.1. Matrix elements for vectors centred on the same point

The computation ofVjG0(z)Vj requires the determination of the matrix elements

〈ξkj |G0(z)|ξqj 〉 = (rkj rqj )3/2〈rkj , `kj , mkj |G0(z)|rqj , `qj ,mqj 〉
= −δ`kj `qj δmkj mqj 2M(rkj r

q

j )
3/2ph+

`kj
(pr〉)j`kj (pr〈) (42)

wherer〉, r〈 denote respectively the greatest and lowest value ofrkj , r
q

j , (equal in the case
rkj = rqj ), andp is given by equation (10).

The Kronecker symbols in equation (42) express the fact thatG0(z) commutes with the
angular momentum operators, and the derivation of equation (42) requires an integration
in the complexp plane and is given for example in [2]. For the particular case
`kj = mkj = 0, rkj ≡ r, equation (42) gives:

r3〈r, 0, 0|G0(z)|r, 0, 0〉 = −2Mr3p

(
exp(ipr)

pr

)(
sin(pr)

pr

)
. (43)

B.2. Matrix elements for vectors centred on different points

The computation ofVjG0(z)Vs (j 6= s) requires the determination of the matrix elements

〈ξkj |G0(z)|ξqs 〉 = (rkj rqs )3/2〈rkj , `kj , mkj | exp(iaj · p)G0(z) exp(−ias · p)|rqs , `qs , mqs 〉
= (rkj rqs )3/2〈rkj , `kj , mkj | exp(−i(as − aj ) · p)G0(z)|rqs , `qs , mqs 〉.

An expansion of the exponential term according to equation (37) and the insertion of the
closure relation (36) withp in place ofr yields

〈ξkj |G0(z)|ξqs 〉 = (rkj rqs )3/28
∑
λ,µ

i(λ+`
k
j−`qs )Y µλ (aj − as)

×
∫ ∞

0
dp p2

j`kj (pr
k
j )j`qs (pr

q
s )jλ(p|aj − as |)

z − p2/(2M)

∫
dp̂ Y

mkj

`kj
(p)Ym

q
s

`
q
s
(p)Y

µ
λ (p).

The angular integration over the product of three spherical harmonics can be expressed in
terms of Wigner 3j symbols (see e.g. [8]):∫

dp̂Y
mkj

`kj
(p)Y

m
q
s

`
q
s
(p)Y

µ
λ (p)



7846 E de Prunelé

= (−1)−m
k
j

√
(2`kj + 1)(2`qs + 1)(2λ+ 1)

4π

(
lkj l

q
s λ

0 0 0

)(
lkj l

q
s λ

−mkj m
q
s µ

)
.

It is important to note that the 3j symbols with only zeros on the second line are different
from zero only if lkj + lqs + λ is even. The computation of the radial integral

B ≡
∫ ∞

0
dp p2

j`kj (pr
k
j )j`qs (pr

q
s )jλ(p|aj − as |)

z − p2/(2M)

then goes as follows. From equation (40) and the even parity of the sumlkj + lqs + λ, one
deduces

B = 1

2

∫ ∞
−∞

dp p2
j`kj (pr

k
j )j`qs (pr

q
s )jλ(p|aj − as |)

z − p2/(2M)
.

The decomposition

jλ(p|aj − as |) = h+λ (p|aj − as |)− h−λ (p|aj − as |)
2i

and the inequalities

|aj − as | > rqs + rkj (44)

allow the closure of the contour with an infinite semi circle in the upper half plane for
the part involvingh+ and with an infinite semi circle in the lower half plane for the part
involving h−, without changing the value ofB. The Cauchy theorem on residues then
yields

B = M

2i
2π i

p

2
{−j`kj (prkj )j`qs (prqs )h+λ (p|aj − as |)+ j`kj (−prkj )j`qs (−prqs )h−λ (−p|aj − as |)}

with p given by equation (10). From equations (40) and (41), one finally obtains

〈ξkj |G0(z)|ξqs 〉 = −(−1)m
k
j (rkj r

q
s )

3/28πMpj`kj (pr
k
j )j`qs (pr

q
s )

√
(2`kj + 1)(2`qs + 1)

4π

×
∑
λ

√
2λ+ 1i(λ+`

k
j−`qs )h+λ (p|aj − as |)Y

mkj−mqs
λ (aj − as)(

lkj l
q
s λ

0 0 0

)(
lkj l

q
s λ

−mkj m
q
s mkj −mqs

)
. (45)

Theλ values which contribute to the above sum are those which satisfy|`kj − `qs |〈λ〈`kj + `qs
and λ + `kj + `qs even. For the particular casèkj = `

q
s = mkj = m

q
s = 0, rkj = r

q
s ≡ r,

equation (45) gives:

r3〈r, 0, 0| exp(iaj · p)G0(z) exp(−ias · p)|r, 0, 0〉

= −2Mr3p

(
sin(pr)

pr

)2(exp(ip|aj − as |)
p|aj − as |

)
. (46)
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Appendix C. Symmetry properties with respect to rotation, time reversal and parity

C.1. Invariance properties of each interactionVj

First let us consider the behaviour of each interactionVj (see equations (3) and (4)) under
rotationwith respect to its centrePj (see equation (2)).

exp(−iα ·L)|r, l, m〉 =
∑
m′
D`
m′,m(α)|r, l, m′〉

whereα is the vector which defines the rotation, andD`
m′,m(α) are the elements of the

rotation matrices which are defined here as in [8] except for the sign of the argumentα.
The unitarity properties of these matrices∑

m

D`
m′,m(α)D

`
m′′,m(α) = δm′,m′′

imply that rotational invariance ofVj requires thatVj must involve the whole sum∑`
m=−` |r, `,m〉〈r, `,m| for each value ofr, ` considered.

If T denotes the time-reversal operator, the equation

T |r, `,m〉 = (−1)m|r, `,−m〉
implies that time-reversal invariance requires thatVj must involves the sum
|r, `,m〉〈r, `,m| + |r, `,−m〉〈r, `,−m| for each value ofr, ` considered. Therefore, if the
interactionVj is invariant under rotation, it is also invariant under time reversal.

The equation

P |r, l, m〉 = (−1)`|r, `,m〉 (47)

whereP is the reflection operator, shows thatVj is always invariant by reflectionwith
respect to its centre.

C.2. Symmetry properties of the matrix elements of the free resolventG0

The solution of the scattering problem requires the computation of following matrix elements
of the operatorB ≡ exp(i(a− a′) · p)G0(z) (see equations (42) and (45)):

A ≡ 〈r, `,m|B|r ′, `′, m′〉.
It is therefore of interest to find the symmetry properties relevant to these matrix elements.

C.2.1. General symmetry properties.By general properties, we mean properties that are
independent of the relative orientation ofOz anda− a′. The property

A = (−1)m+m
′ 〈r ′, `′,−m′| exp(i(a′ − a) · p)G0(z)|r, `,−m〉

can be obtained directly from consideration of time reversal. For the proof, it is convenient
to use the scalar product notation〈, T 〉 in place of the Dirac notation〈|T |〉 which can be
ambiguous for anti-unitary operators [2]:〈ψ, T χ〉 = 〈T †ψ, χ〉

A = 〈(r, `,m),exp(i(a− a′) · p)T †TG0(z)T
†T (r ′, `′, m′)〉

= 〈(r, `,m),exp(i(a− a′) · p)T †G0(z)T (r
′, `′, m′)〉

= (−1)m
′ 〈(r, `,m), T † exp(i(a− a′) · p)G0(z)(r

′, `′,−m′)〉
= (−1)m+m

′ 〈r ′, `′,−m′| exp(i(a′ − a) · p)G0(z)|r, `,−m〉.
Equation (47) shows that

A = (−1)`+`
′ 〈r, `,m| exp(−i(a− a′) · p)G0(z)|r ′, `′, m′〉.
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C.2.2. Symmetry properties for special geometric configurationsThe rotation operator
exp(−iα · L) associated with a rotation of angleα around an axis with polar coordinate
θ, ϕ can be expressed in terms of our fixed frameO, x, y, z operators:

exp(−iα ·L) = exp(−iϕLz) exp(−iθLy) exp(−iαLz) exp(iθLy) exp(iϕLz). (48)

We shall use the definition〈`,m| exp(−iβLy)|l′, m′〉 ≡ d`mm′(β) and with the phase
convention (35):

d`mm′(−β) = (−1)m
′−md`mm′(β)

d`mm′(π) = (−1)`−m
′
δm′,−m.

The notationd`mm′(β) differs from that of [8] by the sign ofβ. Let us now consider
rotations of centreO along an axis parallel to the vectora − a′, and of angleα. The
unitary rotation operator exp(−iα ·L) associated with this operation clearly commute with
B, and the equationA = 〈r, `,m| exp(iα ·L)B exp(−iα ·L)|r ′, `′, m′〉 yields according to
equation (48):
• A = 0 if m 6= m′ for the casea′ − a parallel toOz.
• A = (−1)`+m+`

′+m′ 〈r ′, `′,−m′| exp(i(a′ − a) · p)G0(z)|r, `,−m〉 for the casea′ − a
parallel toOy. (This result is obtained by considering a rotation of angleπ ).
• A = (−1)`+`

′ 〈r ′, `′,−m′| exp(i(a′ − a)·p)G0(z)|r, `,−m〉 for the casea′−a parallel
to Ox. (This result is obtained by considering a rotation of angleπ .)

Finally, the unitary operatorU associated with reflection with respect to aplane
containing the vectora − a′ clearly commutes withB. U is equal to the parity operator
P left multiplied by the rotation operator corresponding to aπ rotation about an axis
perpendicular to the plane. Ifθ⊥, ϕ⊥ denote the polar and azimuthal angles of a vector
perpendicular to the plane, it can be shown by considering equation (48), that the equation
A = 〈r, `,m|U †BU |r ′, `′, m′〉 can be expressed as:

A = (−1)`+m+`
′+m′ exp(i(m′ −m)ϕ⊥)

∑
µ,µ′

exp(i(µ− µ′)ϕ⊥)d`′µ′m′(2θ⊥)d`µm(2θ⊥)〈r, `, µ|

× exp(i(a− a′) · p)G0(z)|r ′, `′, µ′〉. (49)

One deduces from equation (49):
• A = 0 if `+m+ `′ +m′ odd fora−a′ in the planeOx,Oy ( by choosingθ⊥ = 0).
• A = 〈r, `,−m| exp(i(a − a′) · p)G0(z)|r ′, `′,−m′〉 for a − a′ in the planeOy,Oz

(by choosingθ⊥ = π/2, ϕ⊥ = 0).
• A = (−1)m

′−m〈r, `,−m| exp(i(a − a′) · p)G0(z)|r ′, `′,−m′〉 for a − a′ in the plane
Ox,Oz (by choosingθ⊥ = π/2, ϕ⊥ = π/2).
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